Resolving systematic errors in widely-used enhancer activity assays in human cells enables genome-wide functional enhancer characterization

نویسندگان

  • Felix Muerdter
  • Łukasz M. Boryń
  • Ashley R. Woodfin
  • Christoph Neumayr
  • Martina Rath
  • Muhammad A. Zabidi
  • Michaela Pagani
  • Vanja Haberle
  • Tomáš Kazmar
  • Rui R. Catarino
  • Katharina Schernhuber
  • Cosmas D. Arnold
  • Alexander Stark
چکیده

The identification of transcriptional enhancers in the human genome is a prime goal in biology. Enhancers are typically predicted via chromatin marks, yet their function is primarily assessed with plasmid-based reporter assays. Here, we show that two previous observations relating to plasmid-transfection into human cells render such assays unreliable: (1) the function of the bacterial plasmid origin-of-replication (ORI) as a conflicting core-promoter and (2) the activation of a type I interferon (IFN-I) response. These problems cause strongly confounding false-positives and -negatives in luciferase assays and genome-wide STARR-seq screens. We overcome both problems by directly employing the ORI as a core-promoter and by inhibiting two kinases central to IFN-I induction. This corrects luciferase assays and enables genome-wide STARR-seq screens in human cells. Comprehensive enhancer activity profiles in HeLa-S3 cells uncover strong enhancers, IFNI-induced enhancers, and enhancers endogenously silenced at the chromatin level. Our findings apply to all episomal enhancer activity assays in mammalian cells, and are key to the characterization of human enhancers. 1 . CC-BY-ND 4.0 International license not peer-reviewed) is the author/funder. It is made available under a The copyright holder for this preprint (which was . http://dx.doi.org/10.1101/164590 doi: bioRxiv preprint first posted online Jul. 17, 2017;

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic Functional Dissection of Common Genetic Variation Affecting Red Blood Cell Traits

Genome-wide association studies (GWAS) have successfully identified thousands of associations between common genetic variants and human disease phenotypes, but the majority of these variants are non-coding, often requiring genetic fine-mapping, epigenomic profiling, and individual reporter assays to delineate potential causal variants. We employ a massively parallel reporter assay (MPRA) to sim...

متن کامل

Genome-wide identification of hypoxia-induced enhancer regions

Here we present a genome-wide method for de novo identification of enhancer regions. This approach enables massively parallel empirical investigation of DNA sequences that mediate transcriptional activation and provides a platform for discovery of regulatory modules capable of driving context-specific gene expression. The method links fragmented genomic DNA to the transcription of randomer mole...

متن کامل

Functional characterization of CYP2D6 enhancer polymorphisms.

CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 an...

متن کامل

Functional anatomy of distant-acting mammalian enhancers.

Transcriptional enhancers are a major class of functional element embedded in the vast non-coding portion of the human genome. Acting over large genomic distances, enhancers play critical roles in the tissue and cell type-specific regulation of genes, and there is mounting evidence that they contribute to the aetiology of many human diseases. Methods for genome-wide mapping of enhancer regions ...

متن کامل

In silico identification and functional validation of allele-dependent AR enhancers

Androgen Receptor (AR) and Estrogen Receptors (ERs) are key nuclear receptors that can cooperate in orchestrating gene expression programs in multiple tissues and diseases, targeting binding elements in promoters and distant enhancers. We report the unbiased identification of enhancer elements bound by AR and ER-α whose activity can be allele-specific depending on the status of nearby Single Nu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017